Project number IST-25582

CGL
Computational Geometric Learning

High Dimensional Predicates: Algorithms and Software

STREP
Information Society Technologies

Period covered: November 1, 2011 – October 31, 2012
Date of preparation: October 12, 2012
Date of revision: October 12, 2012
Start date of project: November 1, 2010
Duration: 3 years
Project coordinator name: Joachim Giesen (FSU)
Project coordinator organisation: Friedrich-Schiller-Universität Jena
Jena, Germany
Abstract

Determinant predicates are the core procedures in many important geometric algorithms, such as convex hull computations and point location. As the dimension of the computation space grows, a higher percentage of the computation time is consumed by these predicates. We study the sequences of determinants that appear in geometric algorithms. We use dynamic determinant algorithms to speed-up the computation of each predicate by using information from previously computed predicates.

We propose two dynamic determinant algorithms with quadratic complexity when employed in convex hull computations, and with linear complexity when used in point location problems. Moreover, we implement them and perform an experimental analysis. Our implementations are based on CGAL and can be easily integrated. They outperform the state-of-the-art determinant and convex hull implementations in most of the tested scenarios, as well as giving a speed-up of 78 times in point location problems.

Another contribution focuses on hashing (minors of) determinantal predicates when computing regular triangulations, which accelerates execution up to 100 times when computing resultant polytopes. This has been implemented and submitted to CGAL.

Keywords: computational geometry, determinant algorithms, Orientation predicate, convex hull, point location, experimental analysis

1 Introduction

Determinantal predicates are in the core of many important geometric algorithms. Convex hull, regular triangulation and point location algorithms use Orientation predicates, the Delaunay triangulation algorithms also involve the in-sphere predicate. Moreover, algorithms for exact volume computation of a convex polytope rely on determinantal volume formulas. In general dimension d, the Orientation predicate of $d+1$ points is the sign of the determinant of a matrix containing the homogeneous coordinates of the points as columns. In a similar way are defined the volume determinant formula and in-sphere predicate of $d+1$ and $d+2$ points respectively.

In practice, as the dimension grows, a higher percentage of the computation time is consumed by these core procedures. For this reason, we focus on algorithms and implementations for the exact computation of the determinant. We give particular emphasis to division-free algorithms. Avoiding divisions is crucial when working on a ring that is not a field, e.g., integers or polynomials. Determinants of matrices whose elements are in a ring arise in combinatorial problems [Kra05], in algorithms for lattice polyhedra [BP99] and secondary polytopes [Ram02] or in computational algebraic geometry [CLO05].
Our main observation is that, in a sequence of computations of determinants that appear in geometric algorithms, the computation of one predicate can be accelerated by using information from the computation of previously computed predicates. In this paper, we study Orientation predicates that appear in convex hull computations. The convex hull problem is probably the most fundamental problem in discrete computational geometry. In fact, the problems of regular and Delaunay triangulations reduce to it.

Our main contribution is threefold. First, we propose an algorithm with quadratic complexity for the determinants involved in a convex hull computation and linear complexity for those involved in point location problems. Moreover, we propose a variant of this algorithm that can perform computations over the integers. Second, we implement our proposed algorithms along with division-free determinant algorithms from the literature. We perform an experimental analysis of the current state-of-the-art packages for exact determinant computations along with our implementations. Without taking the dynamic algorithms into account, the experiments serve as a case study of the best implementation of determinant algorithms, which is of independent interest. However, dynamic algorithms outperform the other determinant implementations in almost all the cases. Moreover, we implement our method on top of the convex hull package triangulation [BDH09] and experimentally show that it attains a speed-up up to 3.5 times, results in a faster than state-of-the-art convex hull package and a competitive implementation for exact volume computation, as well as giving a speed-up of 78 times in point location problems. Third, we present a method called hashing determinants that optimizes the performance in a sequence of convex hull operations in problems presented in [EFKP12]. We also present the CGAL submission of the implementation of this method.

Let us review previous work. There is a variety of algorithms and implementations for computing the determinant of a $d \times d$ matrix. By denoting $O(d^\omega)$ their complexity, the best current ω is 2.697263 [KV05]. However, good asymptotic complexity does not imply good behavior in practice for small and medium dimensions. For instance, LinBox [DGG+02] which implements algorithms with state-of-the-art asymptotic complexity, introduces a significant overhead in medium dimensions, and seems most suitable in very high dimensions (typically > 100). Eigen [GJ+10] and CGAL [CGA] implement decomposition methods of complexity $O(n^3)$ and seem to be suitable for low to medium dimensions. There exist algorithms that avoid divisions such as [Rot01] with complexity $O(n^4)$ and [Bir11] with complexity $O(nM(n))$ where $M(n)$ is the complexity of matrix multiplication. In addition, there exists a variety of algorithms for determinant sign computation [BEPP99, ABM99]. The problem of computation of several determinants has also been studied. TOPCOM [Ram02], the reference software for computing triangulations of a set of points, efficiently precomputes all orientation determinants that will be needed in the computation and stores their signs. Our main tools are the Sherman-Morrison formulas [SM50, Bar51]. They relate the inverse of a matrix after a small-rank perturbation to the inverse of the original matrix. In [San04] these formulas are used in a similar way to solve the dynamic transitive closure problem in graphs.

Contribution to CGL. In a previous technical report [EFP11] we have studied the computation of Orientation predicates appearing in the above problem and accelerated them by maintaining a hash table of computed minors of the determinants. These minors appear many times in the computation. Although, applying that method to the convex hull computation does not lead to a more efficient algorithm. In the current report we propose a more general new method that accelerates the predicates involved in a convex hull computation. Most of this work presented here is published in [FP12]. Moreover, we present an extended version of the hashing determinants method for a sequence of convex hull operations (also improving complexity bounds of [EFP11]) and a CGAL submission of the implementation of this method.
2 Dynamic Determinant Computations

In the dynamic determinant problem, a \(d \times d \) matrix \(A \) is given. Allowing some preprocessing, we should be able to handle updates of elements of \(A \) and return the current value of the determinant. We consider here only non-singular updates, i.e., updates that do not make \(A \) singular. Let \((A)_i \) denote the \(i \)-th column of \(A \), and \(e_i \) the vector with 1 in its \(i \)-th place and 0 everywhere else.

Consider the matrix \(A' \), resulting from replacing the \(i \)-th column of \(A \) by a vector \(u \). The Sherman-Morrison formula [Bar51, SM50] states that \((A + wv^T)^{-1} = A^{-1} - \frac{(A^{-1}w)(v^TA^{-1})}{1 + v^T A^{-1}w}\). An \(i \)-th column update of \(A \) is performed by substituting \(v = e_i \) and \(w = u - (A)_i \) in the above formula. Then, we can write \(A'^{-1} \) as follows.

\[
A'^{-1} = (A + (u - (A)_i)e_i^T)^{-1} = A^{-1} - \frac{(A^{-1}(u - (A)_i))(e_i^T A^{-1})}{1 + e_i^T A^{-1}(u - (A)_i)}
\] (1)

If \(A^{-1} \) is computed, we compute \(A'^{-1} \) using Eq. 1 in \(3d^2 + 2d + O(1) \) arithmetic operations. Similarly, the matrix determinant lemma [Har97] gives Eq. 2 below to compute \(\det(A') \) in \(2d + O(1) \) arithmetic operations, if \(\det(A) \) is computed.

\[
\det(A') = \det(A + (u - (A)_i)e_i^T) = (1 + e_i^T A^{-1}(u - (A)_i)) \det(A)
\] (2)

Eqs. 1 and 2 lead to the following result.

Proposition 1. [SM50] The dynamic determinant problem can be solved using \(O(d^2) \) arithmetic operations for preprocessing and \(O(d^2) \) for non-singular one column updates.

Indeed, this computation can also be performed over a ring. To this end, we use the adjoint of \(A \), denoted by \(A^{adj} \), rather than the inverse. It holds that \(A^{adj} = \det(A) A^{-1} \), thus we obtain the following two equations.

\[
A^{adj} = \frac{1}{\det(A)} (A^{adj} \det(A') - (A^{adj}(u - (A)_i))(e_i^T A^{adj}))
\] (3)

\[
\det(A') = \det(A) + e_i^T A^{adj}(u - (A)_i)
\] (4)

The only division, in Eq. 3, is known to be exact, i.e., its remainder is zero. The above computations can be performed in \(5d^2 + d + O(1) \) arithmetic operations for Eq. 3 and in \(2d + O(1) \) for Eq. 4. In the sequel, we will call dyn_inv the dynamic determinant algorithm which uses Eqs. 1 and 2, and dyn_adj the one which uses Eqs. 3 and 4.
2.1 Geometric Algorithms

Let us start with some basic definitions from discrete and computational geometry. Let $\mathcal{A} \subset \mathbb{R}^d$ be a pointset. We define the convex hull of a pointset \mathcal{A}, denoted by $\text{conv}(\mathcal{A})$, as the smallest convex set containing \mathcal{A}. A hyperplane supports $\text{conv}(\mathcal{A})$ if $\text{conv}(\mathcal{A})$ is entirely contained in one of the two closed half-spaces determined by the hyperplane and has at least one point on the hyperplane. A face of $\text{conv}(\mathcal{A})$ is the intersection of $\text{conv}(\mathcal{A})$ with a supporting hyperplane which does not contain $\text{conv}(\mathcal{A})$. Faces of dimension 0, 1, $d - 1$ are called vertices, edges and facets respectively. We call a face f of $\text{conv}(\mathcal{A})$ visible from $a \in \mathbb{R}^d$ if there is a supporting hyperplane of f such that $\text{conv}(\mathcal{A})$ is contained in one of the two closed half-spaces determined by the hyperplane and a in the other. A k-simplex of \mathcal{A} is an affinely independent subset S of \mathcal{A}, where $\dim(\text{conv}(S)) = k$. A triangulation of \mathcal{A} is a collection of subsets of \mathcal{A}, the cells of the triangulation, such that the union of the cells’ convex hulls equals $\text{conv}(\mathcal{A})$, every pair of convex hulls of cells intersect at a common face and every cell is a simplex.

We introduce in this section our methods for optimizing the computation of sequences of determinants that appear in geometric algorithms. First, we use dynamic determinant computations in incremental convex hull algorithms. Then, we show how this solution can be extended to point location in triangulations.

Let \vec{a} be vector $(a, 1)$ for $a \in \mathbb{R}^d$. For any sequence C of points $a_i \in \mathcal{A}$, $i = 1 \ldots d + 1$, we denote A_C its Orientation $(d + 1) \times (d + 1)$ matrix. For every a_i, the column i of A_C contains \vec{a}_i’s coordinates as entries. For simplicity, we assume general position of \mathcal{A} and focus on the Beneath-and-Beyond (BB) algorithm [Sei81]. However, our method can be extended to handle degenerate inputs as in [Ede87, Sect. 8.4], as well as to be applied to any incremental convex hull algorithm by utilizing the dynamic determinant computations to answer the predicates appearing in point location (see Cor. 4). In what follows, we use the dynamic determinant algorithm dyn_adj, which can be replaced by dyn_inv yielding a variant of the presented convex hull algorithm.

The BB algorithm is initialized by computing a d-simplex of \mathcal{A}. At every subsequent step, a new point from \mathcal{A} is inserted, while keeping a triangulated convex hull of the inserted points. Let t be the number of cells of this triangulation. Assume that, at some step, a new point $a \in \mathcal{A}$ is inserted and T is the triangulation of the convex hull of the points of \mathcal{A} inserted up to now. To determine if a facet F is visible from a, an orientation predicate involving a and the points of F has to be computed. This can be done by using Eq. 4 if we know the adjoint matrix of points of the cell that contains F. But, if F is visible, this cell is unique and we can map it to the adjoint matrix corresponding to its points.

Our method (Alg. 1), as initialization, computes from scratch the adjoint matrix that corresponds to the initial d-simplex. At every incremental step, it computes the orientation predicates using the adjoint matrices computed in previous steps and Eq. 4. It also computes the adjoint matrices corresponding to the new cells using Eq. 3. By Prop. 1, this method leads to the following result.

Theorem 2. Given a d-dimensional pointset all, except the first, orientation predicates of incremental convex hull algorithms can be computed in $O(d^2)$ time and $O(d^2 t)$ space, where t is the number of cells of the constructed triangulation.

Essentially, this result improves the computational complexity of the determinants involved in incremental convex hull algorithms from $O(d^3)$ to $O(d^2)$. To analyze the complexity of Alg. 1, we bound the number of facets of Q in every step of the outer loop of Alg. 1 with the number of $(d - 1)$-faces of the constructed triangulation of $\text{conv}(\mathcal{A})$, which is bounded by $(d + 1)t$. Thus, using Thm. 2, we have the following complexity bound for Alg. 1.
Algorithm 1: Incremental Convex Hull (A)

Input: pointset \(A \subset \mathbb{R}^d \)

Output: convex hull of \(A \)

sort \(A \) by increasing lexicographic order of coordinates, i.e., \(A = \{a_1, \ldots, a_n\} \);

\(T \leftarrow \{d\text{-face of } \text{conv}(a_1, \ldots, a_{d+1})\} \); // \(\text{conv}(a_1, \ldots, a_{d+1}) \) is a \(d \)-simplex

\(Q \leftarrow \{ \text{facets of } \text{conv}(a_1, \ldots, a_{d+1}) \} \);

compute \(A_{d+1}^{\text{adj}} \), \(\det(A_{d+1}^{\text{adj}}) \);

\(\forall a \in \{a_{d+2}, \ldots, a_n\} \) do

\(Q' \leftarrow Q \);

\(\forall F \in Q \) do

\(C \leftarrow \) the unique \(d \)-face s.t. \(C \in T \) and \(F \in C \);

\(u \leftarrow \) the unique vertex s.t. \(u \in C \) and \(u \notin F \);

\(C' \leftarrow F \cup \{a\} \);

// both \(\det(A_C) \) and \(A_{d+1}^{\text{adj}} \) were computed in a previous step

\(\det(A_{C'}) = \det(A_C) + (A_{d+1}^{\text{adj}})((\bar{u} - \bar{a}) \cdot \bar{e}) \);

if \(\det(A_{C'}) \det(A_C) \leq 0 \) and \(\det(A_C) \neq 0 \) then

\(A_{C'}^{\text{adj}} \leftarrow \frac{1}{\det(A_C)}(A_{d+1}^{\text{adj}} \det(A_{C'}) - A_{C'}^{\text{adj}}((\bar{u} - \bar{a}) \cdot \bar{e})^T A_{d+1}^{\text{adj}}) \);

\(T \leftarrow T \cup \{d\text{-face of } \text{conv}(C')\} \);

\(Q' \leftarrow Q' \ominus \{(d-1)\text{-faces of } C'\} \); // symmetric difference

\(Q \leftarrow Q' \);

Corollary 3. Given \(n \) \(d \)-dimensional points, the complexity of BB algorithm is \(O(n \log n + d^3 nt) \), where \(n \gg d \) and \(t \) is the number of cells of the constructed triangulation.

Note that the complexity of BB, without using the method of dynamic determinants, is bounded by \(O(n \log n + d^{\omega + 1} nt) \). Recall that \(t \) is bounded by \(O(n^{d/2}) \) [Zie95, Sect.8.4], which shows that Alg. 1, and convex hull algorithms in general, do not have polynomial complexity. The schematic description of Alg. 1 and its coarse analysis is good enough for our purpose: to illustrate the application of dynamic determinant computation to incremental convex hulls and to quantify the improvement of our method. See Sect. 2.2 for a practical approach to incremental convex hull algorithms using dynamic determinant computations.

The above results can be extended to improve the complexity of geometric algorithms that are based on convex hulls computations, such as algorithms for regular or Delaunay triangulations and Voronoi diagrams. It is straightforward to apply the above method in orientation predicates appearing in point location algorithms. By using Alg. 1, we compute a triangulation and a map of adjoint matrices to its cells. Then, the point location predicates can be computed using Eq. 4, avoiding the computation of new adjoint matrices.

Corollary 4. Given a triangulation of a \(d \)-dimensional pointset computed by Alg. 1, the orientation predicates involved in any point location algorithm can be computed in \(O(d^2 t) \) time and \(O(d^2 t) \) space, where \(t \) is the number of cells of the triangulation.

2.2 Implementation and Experimental Analysis

We propose the hashed dynamic determinants scheme and implement it in C++. The design of our implementation is modular, that is, it can be used on top of either geometric software
providing geometric predicates (such as orientation) or algebraic software providing dynamic determinant algorithm implementations. The code is publicly available from

The hashed dynamic determinants scheme consists of efficient implementations of algorithms dyn_inv and dyn_adj (Sect. 2) and a hash table, which stores intermediate results (matrices and determinants) based on the methods presented in Sect. 2.1. Every \((d-1)\)-face of a triangulation, \(i.e.,\) a common facet of two neighbor cells (computed by any incremental convex hull package which constructs a triangulation of the computed convex hull), is mapped to the indices of its vertices, which are used as keys. These are mapped to the adjoint (or inverse) matrix and the determinant of one of the two adjacent cells. Let us illustrate this approach with an example, on which we use the dyn_adj algorithm.

Example 1. Let \(A = \{a_1 = (0,1), a_2 = (1,2), a_3 = (2,1), a_4 = (1,0), a_5 = (2,2)\}\) where every point \(a_i\) has an index \(i\) from 1 to 5. Assume we are in some step of an incremental convex hull or point location algorithm and let \(T = \{(1,2,4), (2,3,4)\}\) be the 2-dimensional triangulation of \(A\) computed so far. The cells of \(T\) are written using the indices of the points in \(A\). The hash table will store as keys the set of indices of the 2-faces of \(T\), \(i.e.,\) \(\{(1,2), (2,4), (1,4)\}\) mapping to the adjoint and the determinant of the matrix constructed by the points \(a_1, a_2, a_4\). Similarly, \(\{(2,3), (3,4), (2,4)\}\) are mapped to the adjoint matrix and determinant of \(a_2, a_3, a_4\). To insert \(a_5\), we compute the determinant of \(a_2, a_3, a_5\), by querying the hash table for \(\{2,3\}\). Adjoint and determinant of the matrix of \(a_2, a_3, a_4\) are returned, and we perform an update of the column corresponding to point \(a_4\), replacing it by \(a_5\) by using Eqs. 3 and 4.

To implement the hash table, we used the Boost libraries \[boo\]. To reduce memory consumption and speed-up look-up time, we sort the lists of indices that form the hash keys. We also use the GNU Multiple Precision arithmetic library (GMP), the current standard for multiple-precision arithmetic, which provides integer and rational types \[mpz_t\] and \[mpq_t\], respectively.

We perform an experimental analysis of the proposed methods. All experiments ran on an Intel Core i5-2400 3.1GHz, with 6MB L2 cache and 8GB RAM, running 64-bit Debian GNU/Linux. We divide our tests in four scenarios, according to the number type involved in computations: (a) rationals where the bit-size of both numerator and denominator is 10000, (b) rationals converted from doubles, that is, numbers of the form \(m \times 2^p\), where \(m\) and \(p\) are integers of bit-size 53 and 11 respectively, (c) integers with bit-size 10000, and (d) integers with bit-size 32. However, it is rare to find in practice input coefficients of scenarios (a) and (c). Inputs are usually given as 32 or 64-bit numbers. These inputs correspond to the coefficients of scenario (b). Scenario (d) is also very important, since points with integer coefficients are encountered in many combinatorial applications (see Sect. 1).

We compare state-of-the-art software for exact computation of the determinant of a matrix. We consider LU decomposition in CGAL \[CGA\], optimized LU decomposition in Eigen \[GJ_10\], LinBox asymptotically optimal algorithms \[DGG_02\] (tested only on integers) and Maple 14 LinearAlgebra \[Determinant\] (the default determinant algorithm). We also implemented two division-free algorithms: Bird’s \[Bir_11\] and Laplace expansion \[Poo_06, Sect.4.2\]. Finally, we consider our implementations of dyn_inv and dyn_adj.

We test the above implementations in the four coefficient scenarios described above. When coefficients are integer, we can use integer exact division algorithms, which are faster than quotient-remainder division algorithms. In this case, Bird, Laplace and dyn_adj enjoy the advantage of using the number type mpz_t while the rest are using mpq_t. The input matrices are constructed starting from a random \(d \times d\) matrix, replacing a randomly selected column with a random \(d\) vector. We present experimental results of the four input scenarios in Tables 1, 2,
Table 1: Determinant tests, inputs of scenario (a): rationals of bit-size 10000. Times in milliseconds, averaged over 1000 tests. Light blue highlights the best non-dynamic algorithm while yellow highlights the dynamic algorithm if it is the fastest over all.

<table>
<thead>
<tr>
<th>d</th>
<th>Bird</th>
<th>CGAL</th>
<th>Eigen</th>
<th>Laplace</th>
<th>Maple</th>
<th>dyn_inv</th>
<th>dyn_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>16.61</td>
<td>17.05</td>
<td>15.02</td>
<td>11.31</td>
<td>16.234</td>
<td>195.38</td>
<td>191.95</td>
</tr>
<tr>
<td>4</td>
<td>143.11</td>
<td>98.15</td>
<td>71.35</td>
<td>63.22</td>
<td>115.782</td>
<td>746.32</td>
<td>896.58</td>
</tr>
<tr>
<td>5</td>
<td>801.26</td>
<td>371.85</td>
<td>239.97</td>
<td>273.27</td>
<td>570.582</td>
<td>2065.08</td>
<td>2795.53</td>
</tr>
<tr>
<td>6</td>
<td>3199.79</td>
<td>1086.80</td>
<td>644.62</td>
<td>1060.10</td>
<td>1576.592</td>
<td>4845.38</td>
<td>7171.81</td>
</tr>
<tr>
<td>7</td>
<td>10331.30</td>
<td>2959.80</td>
<td>1448.60</td>
<td>273.27</td>
<td>570.582</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

3, 4. We tested a fifth coefficient scenario (rationals of bit-size 32), but do not show results here because timings are quite proportional to those shown in Table 1. We stop testing an implementation when it is slow and far from being the fastest (denoted with '-' in the Tables).

On one hand, the experiments show the most efficient determinant algorithm implementation in the different scenarios described, without considering the dynamic algorithms. This is a result of independent interest, and shows the efficiency of division-free algorithms in some settings. The simplest determinant algorithm, Laplace expansion, proved to be the best in all scenarios, until dimension 4 to 6, depending on the scenario. It has exponential complexity, thus it is slow in dimensions higher than 6 but it behaves very well in low dimensions because of the small constant of its complexity and the fact that it performs no divisions. Bird is the fastest in scenario (c), starting from dimension 7, and in scenario (d), in dimensions 7 and 8. It has also a small complexity constant, and performing no divisions makes it competitive with decomposition methods (which have better complexity) when working with integers. CGAL and Eigen implement LU decomposition, but the latter is always around two times faster. Eigen is the fastest implementation in scenarios (a) and (b), starting from dimension 5 and 6 respectively, as well as in scenario (d) in dimensions between 9 and 12. It should be stressed that decomposition methods are the current standard to implement determinant computation. Maple is the fastest only in scenario (d), starting from dimension 13. In our tests, Linbox is never the best, due to the fact that it focuses on higher dimensions.

On the other hand, experiments show that dyn_adj outperforms all the other determinant algorithms in scenarios (b), (c), and (d). On each of these scenarios, there is a threshold dimension, starting from which dyn_adj is the most efficient, which happens because of its better asymptotic complexity. In scenarios (c) and (d), with integer coefficients, division-free performs much better, as expected, because integer arithmetic is faster than rational. In general, the sizes of the coefficients of the adjoint matrix are bounded. That is, the sizes of the operands of the arithmetic operations are bounded. This explains the better performance of dyn_adj over the dyn_inv, despite its worse arithmetic complexity.

For the experimental analysis of the behaviour of dynamic determinants used in convex hull algorithms (Alg. 1, Sect. 2.1), we experiment with four state-of-the-art exact convex hull packages. Two of them implement incremental convex hull algorithms: triangulation [BDH09] implements [CMS93] and beneath-and-beyond (bb) in polymake [GJ00]. The package cdd [Fuk08] implements the double description method, and lrs implements the gift-wrapping algorithm using reverse search [Avi00]. We propose and implement a variant of triangulation, which we will call hdcch, implementing the hashed dynamic determinants scheme for dimensions higher than 6 (using Eigen for initial determinant and adjoint or inverse matrix computation) and using Laplace determinant algorithm for lower dimensions. The main difference between this implementation and Alg. 1 of Sect. 2.1 is that it does not sort the points and, before inserting a point, it performs a point location. Thus, we can take advantage of our scheme in two places: in
<table>
<thead>
<tr>
<th>d</th>
<th>Bird</th>
<th>CGAL</th>
<th>Eigen</th>
<th>Laplace</th>
<th>Linbox</th>
<th>Maple</th>
<th>dyn_inv</th>
<th>dyn_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.013</td>
<td>.021</td>
<td>.014</td>
<td>.008</td>
<td>.058</td>
<td>.046</td>
<td>.023</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.046</td>
<td>.050</td>
<td>.033</td>
<td>.020</td>
<td>.105</td>
<td>.108</td>
<td>.042</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.122</td>
<td>.110</td>
<td>.072</td>
<td>.056</td>
<td>.288</td>
<td>.213</td>
<td>.067</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.268</td>
<td>.225</td>
<td>.137</td>
<td>.141</td>
<td>.597</td>
<td>.376</td>
<td>.102</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.522</td>
<td>.412</td>
<td>.243</td>
<td>.993</td>
<td>.824</td>
<td>.613</td>
<td>.148</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.930</td>
<td>.710</td>
<td>.390</td>
<td>–</td>
<td>.1176</td>
<td>.920</td>
<td>.210</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.520</td>
<td>1.140</td>
<td>.630</td>
<td>–</td>
<td>1.732</td>
<td>1.330</td>
<td>.310</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.380</td>
<td>1.740</td>
<td>.940</td>
<td>–</td>
<td>2.380</td>
<td>1.830</td>
<td>.430</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>–</td>
<td>2.510</td>
<td>1.370</td>
<td>–</td>
<td>3.172</td>
<td>2.480</td>
<td>.570</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>–</td>
<td>3.570</td>
<td>2.000</td>
<td>–</td>
<td>4.298</td>
<td>3.260</td>
<td>.760</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>4.960</td>
<td>2.690</td>
<td>–</td>
<td>5.673</td>
<td>4.190</td>
<td>1.020</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>–</td>
<td>6.870</td>
<td>3.660</td>
<td>–</td>
<td>7.424</td>
<td>5.290</td>
<td>1.360</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Determinant tests, inputs of scenario (b): rationals converted from double. Each timing (in milliseconds) corresponds to the average of computing 10000 (for $d < 7$) or 1000 (for $d \geq 7$) determinants. Highlighting as in Table 1.

<table>
<thead>
<tr>
<th>d</th>
<th>Bird</th>
<th>CGAL</th>
<th>Eigen</th>
<th>Laplace</th>
<th>Linbox</th>
<th>Maple</th>
<th>dyn_inv</th>
<th>dyn_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.23</td>
<td>3.24</td>
<td>2.58</td>
<td>.16</td>
<td>132.64</td>
<td>.28</td>
<td>27.37</td>
<td>2.17</td>
</tr>
<tr>
<td>4</td>
<td>1.04</td>
<td>14.51</td>
<td>10.08</td>
<td>.61</td>
<td>164.80</td>
<td>1.36</td>
<td>76.76</td>
<td>6.59</td>
</tr>
<tr>
<td>5</td>
<td>3.40</td>
<td>45.52</td>
<td>28.77</td>
<td>2.02</td>
<td>367.58</td>
<td>4.52</td>
<td>176.60</td>
<td>14.70</td>
</tr>
<tr>
<td>6</td>
<td>8.91</td>
<td>114.05</td>
<td>67.85</td>
<td>6.16</td>
<td>423.08</td>
<td>1359.80</td>
<td>224.10</td>
<td>155.70</td>
</tr>
<tr>
<td>7</td>
<td>20.05</td>
<td>243.54</td>
<td>138.80</td>
<td>42.97</td>
<td>–</td>
<td>–</td>
<td>569.74</td>
<td>48.49</td>
</tr>
<tr>
<td>8</td>
<td>40.27</td>
<td>476.74</td>
<td>257.24</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>904.21</td>
<td>81.44</td>
</tr>
<tr>
<td>9</td>
<td>73.90</td>
<td>815.70</td>
<td>440.30</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1359.80</td>
<td>155.70</td>
</tr>
<tr>
<td>10</td>
<td>129.95</td>
<td>1358.50</td>
<td>714.40</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1965.30</td>
<td>224.10</td>
</tr>
<tr>
<td>11</td>
<td>208.80</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>328.50</td>
</tr>
<tr>
<td>12</td>
<td>327.80</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>465.00</td>
</tr>
<tr>
<td>13</td>
<td>493.90</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>623.80</td>
</tr>
<tr>
<td>14</td>
<td>721.70</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>830.80</td>
</tr>
<tr>
<td>15</td>
<td>1025.10</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1092.30</td>
</tr>
<tr>
<td>16</td>
<td>1422.80</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1407.20</td>
</tr>
<tr>
<td>17</td>
<td>1938.40</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1795.60</td>
</tr>
<tr>
<td>18</td>
<td>2618.30</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2225.80</td>
</tr>
<tr>
<td>19</td>
<td>3425.70</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2738.00</td>
</tr>
<tr>
<td>20</td>
<td>4465.60</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3413.40</td>
</tr>
</tbody>
</table>

Table 3: Determinant tests, inputs of scenario (c): integers of bit-size 10000. Times in milliseconds, averaged over 1000 tests for $d < 9$ and 100 tests for $d \geq 9$. Highlighting as in Table 1.
the orientation predicates appearing in the point location procedure and in the ones that appear in construction of the convex hull. We design the input of our experiments parametrized on the number type of the coefficients and on the distribution of the points. The number type is either rational or integer. From now on, when we refer to rational and integer we mean scenario (b) and (d), respectively. We test three uniform point distributions: (i) in the d-cube $[-100, 100]^d$, (ii) in the origin-centered d-ball of radius 100, and (iii) on the surface of that ball.

We perform an experimental comparison of the four above packages and hdch, with input points from distributions (i)-(iii) with either rational or integer coefficients. In the case of integer coefficients, we test hdch using mpq_t (hdch_q) or mpz_t (hdch_z). In this case hdch_z is the most efficient with input from distribution (ii) (Fig. 1(a); distribution (i) is similar to this) while in distribution (iii) both hdch_z and hdch_q perform better than all the other packages (see Fig. 1(b)). In the rational coefficients case, hdch_q is competitive to the fastest package (Fig. 2). Note that the rest of the packages cannot perform arithmetic computations using mpz_t because they are lacking division-free determinant algorithms. Moreover, we perform experiments to test the improvements of hashed dynamic determinants scheme on triangulation and their memory consumption. For input points from distribution (iii) with integer coefficients, when dimension ranges from 3 to 8, hdch_q is up to 1.7 times faster than triangulation and hdch_z up to 3.5 times faster (Table 5). It should be noted that hdch is always faster than triangulation. The sole modification of the determinant algorithm made it faster than all other implementations in the tested scenarios. The other implementations would also benefit from applying the same determinant technique. The main disadvantage of hdch is the amount of memory consumed, which allows us to compute up to dimension 8 (Table 5). This drawback can be seen as the price to pay for the obtained speed-up.

A large class of algorithms that compute the exact volume of a polytope is based on triangulation methods [BEF98]. All the above packages compute the volume of the polytope, defined by the input points, as part of the convex hull computation. The volume computation takes place at the construction of the triangulation during a convex hull computation. The sum of the volumes of the cells of the triangulation equals the volume of the polytope. However, the volume of the cell is the absolute value of the orientation determinant of the points of the cell and these values are computed in the course of the convex hull computation. Thus, the

<table>
<thead>
<tr>
<th>d</th>
<th>Bird</th>
<th>CGAL</th>
<th>Eigen</th>
<th>Laplace</th>
<th>Linbox</th>
<th>Maple</th>
<th>dyn_inv</th>
<th>dyn_adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.002</td>
<td>.021</td>
<td>.013</td>
<td>.002</td>
<td>.872</td>
<td>.045</td>
<td>.030</td>
<td>.008</td>
</tr>
<tr>
<td>4</td>
<td>.012</td>
<td>.041</td>
<td>.028</td>
<td>.005</td>
<td>1.010</td>
<td>.094</td>
<td>.058</td>
<td>.015</td>
</tr>
<tr>
<td>5</td>
<td>.032</td>
<td>.080</td>
<td>.048</td>
<td>.016</td>
<td>1.103</td>
<td>.214</td>
<td>.119</td>
<td>.023</td>
</tr>
<tr>
<td>6</td>
<td>.072</td>
<td>.155</td>
<td>.092</td>
<td>.040</td>
<td>1.232</td>
<td>.602</td>
<td>.197</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.138</td>
<td>.253</td>
<td>.149</td>
<td>.277</td>
<td>1.435</td>
<td>.716</td>
<td>.322</td>
<td>.046</td>
</tr>
<tr>
<td>8</td>
<td>.244</td>
<td>.439</td>
<td>.247</td>
<td>–</td>
<td>1.626</td>
<td>.791</td>
<td>.486</td>
<td>.068</td>
</tr>
<tr>
<td>9</td>
<td>.408</td>
<td>.689</td>
<td>.376</td>
<td>–</td>
<td>1.862</td>
<td>.906</td>
<td>.700</td>
<td>.085</td>
</tr>
<tr>
<td>10</td>
<td>.646</td>
<td>1.031</td>
<td>.568</td>
<td>–</td>
<td>2.160</td>
<td>1.014</td>
<td>.982</td>
<td>.107</td>
</tr>
<tr>
<td>11</td>
<td>.956</td>
<td>1.485</td>
<td>.800</td>
<td>–</td>
<td>10.127</td>
<td>1.113</td>
<td>1.291</td>
<td>.133</td>
</tr>
<tr>
<td>12</td>
<td>1.379</td>
<td>2.091</td>
<td>1.139</td>
<td>–</td>
<td>13.101</td>
<td>1.280</td>
<td>1.731</td>
<td>.160</td>
</tr>
<tr>
<td>13</td>
<td>1.957</td>
<td>2.779</td>
<td>1.485</td>
<td>–</td>
<td>–</td>
<td>1.399</td>
<td>2.078</td>
<td>.184</td>
</tr>
<tr>
<td>14</td>
<td>2.603</td>
<td>3.722</td>
<td>1.968</td>
<td>–</td>
<td>–</td>
<td>1.536</td>
<td>2.676</td>
<td>.222</td>
</tr>
<tr>
<td>15</td>
<td>3.485</td>
<td>4.989</td>
<td>2.565</td>
<td>–</td>
<td>–</td>
<td>1.717</td>
<td>3.318</td>
<td>.269</td>
</tr>
<tr>
<td>16</td>
<td>4.682</td>
<td>6.517</td>
<td>3.391</td>
<td>–</td>
<td>–</td>
<td>1.850</td>
<td>4.136</td>
<td>.333</td>
</tr>
</tbody>
</table>

Table 4: Determinant tests, inputs of scenario (d): integers of bit-size 32. Times in milliseconds, averaged over 10000 tests. Highlighting as in Table 1.
computation of the volume consumes no extra time besides the convex hull computation time. Therefore, \texttt{hdch} yields a competitive implementation for the exact computation of the volume of a polytope given by its vertices (Fig. 1).

Finally, we test the efficiency of hashed dynamic determinants scheme on the point location problem. Given a pointset, \texttt{triangulation} constructs a data structure that can perform point locations of new points. In addition to that, \texttt{hdch} constructs a hash table for faster orientation computations. We perform tests with \texttt{triangulation} and \texttt{hdch} using input points uniformly distributed on the surface of a ball (distribution (iii)) as a preprocessing to build the data structures. Then, we perform point locations using points uniformly distributed inside a cube (distribution (i)). Experiments show that our method yields a speed-up in query time of a factor of 35 and 78 in dimension 8 to 11, respectively, using points with integer coefficients (scenario (d)) (see Table 6).

Table 5: Comparison of \texttt{hdch_z}, \texttt{hdch_q} and \texttt{triangulation} using points from distribution (iii) with integer coefficients; \texttt{swap} means that the machine used swap memory.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>time</th>
<th>memory</th>
<th>time</th>
<th>memory</th>
<th>time</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(sec)</td>
<td>(MB)</td>
<td>(sec)</td>
<td>(MB)</td>
<td>(sec)</td>
<td>(MB)</td>
</tr>
<tr>
<td>260</td>
<td>2</td>
<td>0.02</td>
<td>35.02</td>
<td>0.01</td>
<td>33.48</td>
<td>0.05</td>
<td>35.04</td>
</tr>
<tr>
<td>500</td>
<td>2</td>
<td>0.04</td>
<td>35.07</td>
<td>0.02</td>
<td>33.53</td>
<td>0.12</td>
<td>35.08</td>
</tr>
<tr>
<td>260</td>
<td>3</td>
<td>0.07</td>
<td>35.20</td>
<td>0.04</td>
<td>33.64</td>
<td>0.20</td>
<td>35.23</td>
</tr>
<tr>
<td>500</td>
<td>3</td>
<td>0.19</td>
<td>35.54</td>
<td>0.11</td>
<td>33.96</td>
<td>0.50</td>
<td>35.54</td>
</tr>
<tr>
<td>260</td>
<td>4</td>
<td>0.39</td>
<td>35.87</td>
<td>0.21</td>
<td>34.33</td>
<td>0.82</td>
<td>35.46</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>0.90</td>
<td>37.07</td>
<td>0.47</td>
<td>35.48</td>
<td>1.92</td>
<td>37.17</td>
</tr>
<tr>
<td>260</td>
<td>5</td>
<td>2.22</td>
<td>39.68</td>
<td>0.78</td>
<td>35.87</td>
<td>1.77</td>
<td>39.67</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>5.47</td>
<td>45.50</td>
<td>1.80</td>
<td>36.17</td>
<td>3.95</td>
<td>45.50</td>
</tr>
</tbody>
</table>

3 Hashing of Determinants and CGAL submission

This section discusses methods to avoid duplication of computations by exploiting the nature of the determinants appearing in the inner loop of some geometric algorithms, whose runtime is typically dominated by the computation of determinants, for instance, algorithms which compute many regular triangulations of a pointset. Our technique is similar to the dynamic determinant computations described in previous sections, although it focuses in the more specific problem described in detail in [EFKP12].

Consider the $2n \times |\mathcal{A}|$ matrix with the points of \mathcal{A} as columns. Define P as the extension of this matrix by adding lifting values \tilde{w} as the last row. We use the Laplace (or cofactor) expansion along the last row for computing the determinant of the square submatrix formed by any $2n + 1$ columns of P; without loss of generality, we assume these are the first $2n + 1$ columns a_1, \ldots, a_{2n+1}. Let $(a_1, \ldots, a_{2n+1}) \setminus i$ be the vector resulting from removing the i-th element from the vector (a_1, \ldots, a_{2n+1}) and let $P_{(a_1, \ldots, a_{2n+1}) \setminus i}$ be the $(2n) \times (2n)$ matrix obtained from the first $2n$ elements of the columns whose indices are in $(a_1, \ldots, a_{2n+1}) \setminus i$.

11
Figure 1: Comparison of convex hull packages for 6-dimensional inputs with integer coefficients. Points are uniformly distributed (a) inside a 6-ball and (b) on its surface.

Figure 2: Comparison of convex hull packages for 6-dimensional inputs with rational coefficients. Points are uniformly distributed (a) inside a 6-ball and (b) on its surface.

The Orientation predicate is the sign of the determinant of $P_{(a_1,\ldots,a_{2n+2})}^\text{hom}$, constructed by columns a_1,\ldots,a_{2n+2} and adding $\bar{\Gamma} \in \mathbb{R}^{2n+2}$ as last row. Computing a regular subdivision is a long sequence of such predicates, varying a_i’s on each step. We expand along the next-to-last row, which contains the lifting values, and compute the determinants $|P_{(a_1,\ldots,a_{2n+2})}\setminus c_i|$ for $i \in \{1,\ldots,2n+2\}$. Another predicate is Volume, used by VTX(·). It equals the determinant of $P_{(a_1,\ldots,a_{2n+1})}^\text{hom}$, constructed by columns a_1,\ldots,a_{2n+1} and replacing the last row of the matrix by $\bar{\Gamma} \in \mathbb{R}^{2n+1}$.

Example 2. Consider the polynomials $f_0 := c_{00} - c_{01}x_1x_2 + c_{02}x_2$, $f_1 := c_{10} - c_{11}x_1x_2^2 + c_{12}x_2^2$ and $f_2 := c_{20} - c_{21}x_1^2 + c_{22}x_2$ and the lifting vector \bar{w} yielding the matrix P.

\[
P = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
w_1 & w_2 & w_3 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\{ \text{support coordinates} \}
\{ \text{Cayley trick coordinates} \}
\{ \bar{w} \}
| | d | $|A|_i$ | preproc. time (sec) | data structs. (MB) | # of cells in triangul. | query time (sec) |
|------------------|-----|--------|---------------------|-------------------|------------------------|----------------|
| | | | | | | IK |
| hdch_z | 8 | 120 | 45.20 | 6913 | 319438 | 0.41 |
| triang | 8 | 120 | 156.55 | 134 | 319438 | 14.42 |
| hdch_z | 9 | 70 | 45.69 | 6826 | 265874 | 0.28 |
| triang | 9 | 70 | 176.62 | 143 | 265874 | 13.80 |
| hdch_z | 10 | 50 | 43.45 | 6355 | 207190 | 0.27 |
| triang | 10 | 50 | 188.68 | 127 | 207190 | 14.40 |
| hdch_z | 11 | 39 | 38.82 | 5964 | 148846 | 0.18 |
| triang | 11 | 39 | 181.35 | 122 | 148846 | 14.41 |

Table 6: Point location time of 1K and 1000K (1K=1000) query points for hdch_z and triangulation (triang), using distribution (iii) for preprocessing and distribution (i) for queries and integer coefficients.

We reduce the computations of predicates to computations of minors of the matrix obtained from deleting the last row of P. Computing an Orientation predicate using Laplace expansion consists of computing $\binom{|a|}{4} = 15$ minors. On the other hand, if we compute $\det_{\text{hom}}(P_{1,2,3,4,5,6})$, the computation of $\det_{\text{hom}}(P_{1,2,3,4,5,7})$ needs the computation of only $\binom{|a|}{4} - \binom{5}{4} = 10$ new minors. More interestingly, when given a new lifting w', we compute $\det_{\text{hom}}(P'_{1,2,3,4,5,6})$ without computing any new minors.

Our contribution consists in maintaining a hash table with the computed minors, which will be reused at subsequent steps of the algorithm. We store all minors of sizes between 2 and $2n$. For Orientation, they are independent of w and once computed they are stored in the hash table. The main advantage of our scheme is that, for a new w, the only change in P are m (nonzero) coordinates in the last row, hence computing the new determinants can be done by reusing hashed minors. This also saves time from matrix constructions.

Laplace expansion computation of a matrix of size n has complexity $O(n^{n-1}) \sum_{i=1}^{n} L_i$, where L_i is the cost of computing the i-th minor. L_i equals 1 when the i-th minor was precomputed; otherwise, it is bounded by $O((n-1)!)$. This allows us to formulate the following Lemma.

Lemma 5. Using hashing of determinants, the complexity of the Orientation and Volume predicates is $O(n)$ and $O(1)$, respectively, if all minors have already been computed.

Many determinant algorithms modify the input matrix; this makes necessary to create a new matrix and introduces a constant overhead on each minor computation. Computing with Laplace expansion, while hashing the minors of smaller size, performs better than state-of-the-art algorithms, in practice. Experiments in Section 2.2 show that algorithms with hashed determinants outperform their version without hash. For 4,6-dimensional triangulations, we experimentally observed that the speedup factor is between 18 and 100; Figure 3 illustrates the second case.

The drawback of hashing determinants is the amount of storage, which is in $O(n!)$. The hash table can be cleared at any moment to limit memory consumption, at the cost of dropping all previously computed minors. Finding a heuristics to clear the hash table according to the number of times each minor was used would decrease the memory consumption, while keeping running times low.

It is possible to exploit the structure of the above $(2n) \times (2n)$ minor matrices. Let M be such a matrix, with columns corresponding to points of A_0, \ldots, A_n. Let $f : \{1, \ldots, 2n\} \rightarrow \{0, \ldots, n\}$ return i, given the column index. After column permutations, we split M into four $n \times n$
submatrices A, B, D, I, where I is the identity and D is a permutation matrix. This follows from the fact that the bottom half of every column in M has at most one 1, and the last n rows of M contain at least one 1 each, unless $\det M = 0$, which is easily checked. Now, $\det M = \pm \det(B - AD)$, with AD constructed in $O(n)$. Hence, the computation of $(2n) \times (2n)$ minors is asymptotically equal to computing an $n \times n$ determinant. This only decreases the constant within the asymptotic bound. A simple implementation of this idea is not faster than Laplace expansion in the dimensions that we currently focus. However, this idea should be valuable in higher dimensions.

3.1 Implementation and CGAL submission

We implemented our method and submitted it to the CGAL Editorial Board. Our package, called Lifting_Kerneld, introduces a wrapper that can be parametrized by any CGAL d-dimensional kernel (actually, a model of the Kerneld concept).

Our wrapper inherits from the base kernel (the kernel used as parameter of our class) all the geometric objects and some functors. Namely, it inherits all the functors from the base kernel, except Orientationd, which is redefined in order to use our hashing scheme. Moreover, our wrapper adds three new functors:

- Lifted_orientationd, which computes the orientation of $d+2$ points in dimension $d+1$; points are given as d-dimensional kernel points plus one vector of lifting values (this is the lifted analogous to the redefined Orientationd predicate);

- Scaled_volumed, which computes the scaled volume of a polytope defined by $d+1$ points in dimension d (the actual volume multiplied by $d!$);

- Lifted_scaled_volumed, which computes the scaled volume of $d+2$ points in dimension d, taking as parameter the $d+2$ points plus a vector of lifting values (this functor is the lifted analogous of Scaled_volumed).

Technically, the hash table was implemented using the Boost libraries [boo], namely the unordered container library [MSJ08]. We looked for a hashing function, that takes as input a vector of integers and returns an integer, that minimizes collisions. We considered many
different hash functions, including some variations of the well-known FNV hash [FNV91]. We obtained the best results with the implementation of Boost Hash [Jam08], which shows fewer collisions than the other tested functions. The function `boost::hash<std::vector<size_t> >` performs a left fold [Bir98] on the input vector, using start value 0 and fold function \(f(x, y) = x^y (y+0x9e3779b9+(x<<6)+(x>>2)) \), and has a constant lookup cost in practice.

We clear the hash table when it contains \(10^6 \) minors. This gives a good tradeoff between efficiency and memory consumption.

We performed experiments to evaluate the efficiency of hashing determinants scheme (Sect. 3) when applied in algorithms described in [EFKP12]. We gain a \(100 \times \) speedup when computing 6-dimensional regular triangulations (Figure 3).

4 Future Work

It would be interesting to adapt our scheme for gift-wrapping convex hull algorithms and implement it on top of packages such as [Avi00]. In this direction, our scheme should also be adapted to other important geometric algorithms, such as Delaunay triangulations.

In order to overcome the large memory consumption of our method, we shall exploit hybrid techniques. That is, to use the dynamic determinant hashing scheme as long as there is enough memory and subsequently use the best available determinant algorithm (Sect. 2.2), or to clean periodically the hash table.

Another important experimental result would be to investigate the behavior of our scheme using filtered computations.

Acknowledgments. We would like to thank E. Tsigaridas for bibliographic suggestions and M. Karavelas for discussions on efficient dynamic determinant updates.

References

[boo] Boost: peer reviewed C++ libraries.

[CGA] CGAL: Computational geometry algorithms library.

[Fuk08] K. Fukuda. cddlib, version 0.94f, 2008.

