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Abstract

We want to sketch the support of a probability measure on Euclidean
space from samples that have been drawn from the measure. This problem is
closely related to certain manifold learning problems, where one assumes that
the sample points are drawn from a manifold that is embedded in Euclidean
space. Here we propose to sketch the support of the probability measure
(that does not need to be a manifold) by some gradient flow complex, or more
precisely by its Hasse diagram. The gradient flow is defined with respect to
the distance function to the sample points. We prove that a gradient flow
complex (that can be computed) is homotopy equivalent to the support of the
measure for sufficiently dense samplings, and demonstrate the feasibility of
our approach on real world data sets.

1 Introduction

Our goal is to compute a sketch, i.e., an approximation, of the support supp(µ) of a
probability measure µ on Rd from a finite set of sample points that are drawn from
µ. More specifically, we want to compute a complex (not necessarily geometrically
realized) that has the same homotopy type as supp(µ).

Formally, a probability measure and its support are defined as follows.

Probability measure. A non-negative measure µ on Rd is an additive function
that maps every Borel subset B ⊆ Rd to R≥0. Additivity means that

µ

(⋃
i∈N

Bi

)
=
∑
i∈N

µ(Bi),

where (Bi) is a countable family of disjoint Borel subsets. The measure µ is finite
if µ(Rd) <∞ and it is a probability measure if µ(Rd) = 1.

The support of a probability measure µ is the set

supp(µ) = {x ∈ Rd |µ(B(x, r)) > 0 for all r > 0},

where B(x, r) is the closed ball with radius r that is centered at x. Note that
supp(µ) is always closed.

Given samples x1, . . . , xn drawn from µ, a natural approach to sketch supp(µ)
is to approximate it with a union of balls centered at the sample points, i.e., by

Xα =

n⋃
i=1

B(xi, α),

where B(xi, α) is the ball of radius α > 0 centered at xi. The obvious problem with
this approach is to determine a good value for α. One contribution of our paper is
a simple method for choosing such a good value for α.
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The homotopy type of the union of balls Xα can be computed from the nerve of
the ball covering, i.e., the simplicial complex that is determined by the intersection
pattern of the balls, see for example [11] for an introduction to computational
topology. The latter complex is known as the Cech complex of the union. A
smaller simplicial complex from which the homotopy type of the union of balls can
also be computed is the α-complex which is the nerve of the ball covering where the
balls are restricted to the Voronoi cells of their centers. Yet another complex from
which the homotopy type can be computed is the α-flow complex. This complex is
even smaller than the α-complex, i.e., does contain a smaller number of cells, but it
is no longer simplicial. The flow complex can be derived from the distance function
to the sample points. It contains a cell for every critical point of the distance
function. We show that the critical points of the distance function are either close
to supp(µ) or close to a dual structure of supp(µ) that is called the medial axis
of supp(µ). If the support of µ does not exhibit several geometric scales, then
the critical points that belong to supp(µ) and the critical points that belong to the
medial axis can be separated by simple thresholding, i.e., all critical points at which
the distance function takes values less than the threshold value belong to supp(µ)
and the remaining critical points belong to the medial axis. Restricting the flow
complex to the critical points with distance function values less than α constitutes
the α-flow complex. If α is a threshold value at which the two types of critical points
can be separated, then the α-flow complex is homotopy equivalent to supp(µ) for
sufficiently dense samplings.

We have computed α-flow complexes for real data sets and all values for α in
the interval [0,∞). On these data sets we have not observed geometric multi-scale
behavior. Hence, in these situations the simple thresholding was enough to compute
a complex that is homotopy equivalent to supp(µ) for sufficiently dense samplings.
We report details on the data sets and our findings at the end of this paper.

Related work. Our work is related to certain manifold learning problems that
we briefly summarize here. In machine learning manifold learning is often used
synonymously with non-linear dimensionality reduction, but there is also quite some
work (mostly in computational geometry) that aims at learning a manifold from
samples (that need to satisfy certain conditions), where learning a manifold refers
to computing an approximation from a finite sampling that is guaranteed to be
topologically equivalent and geometrically close to the manifold. Exemplary for
this line of work is the technique by Boissonnat and Ghosh [3]. The body of work
in computational geometry does not consider the probabilistic setting where the
sample points are drawn at random from the manifold. The probabilistic setting
was first considered by Niyogi et al. [19] who show how to compute the homology
of a randomly sampled manifold with high confidence. Later Niyogi et al. [20]
have extended this approach for recovering the geometric core of Gaussian noise
concentrated around a low dimensional manifold, i.e., to the case where the samples
are not necessarily drawn from the manifold itself. This can be seen as a topological
approach to unsupervised learning.

Manifold learning plays an important role in semi-supervised classification, where
a manifold assumption, see [1], can be used to exploit the availability of unla-
beled data in classification tasks. The assumption requires that the support of
the marginal probability distribution underlying the data is a manifold (or close
to a manifold). The manifold assumption for semi-supervised learning has been
exploited by Belkin et al. [1] in form of a support vector machine with an additional
Laplacian regularization term (Laplacian SVM), see also [17]. For Laplacian SVMs
the manifold is approximated just by some neighborhood graph on the data points
that can be computed efficiently also in high dimensions, but does not come with
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approximation guarantees. Laplacian SVMs have been shown to achieve state of
the art performance in semi-supervised classification.

Our approach here is more abstract. We are also in the probabilistic setting,
but do not assume that the support of the probability measure from which the
samples are drawn is a manifold. Still, also in this setting we can provide topological
reconstruction guarantees.

2 Distance Function

Here we briefly review the theory of distance functions to a compact set that has
been developed within the fields of differential and computational geometry over
the last years [14, 10, 22, 12, 9, 16, 8, 13, 4]. In the following let K always denote
a compact subset of Rd.

Distance function. The distance function dK to the compact set K assigns to
any point x ∈ Rd its distance to K, i.e.,

dK : Rd → [0,∞), x 7→ min
y∈K
‖x− y‖.

The function dk characterizes K completely since K = d−1K (0).

Gradient. For any point x ∈ Rd let

NK(x) = {p ∈ K : ‖x− p‖ = dK(x)}

be the set of nearest neighbors in K and let c(x) be the center of the smallest
enclosing ball of NK(x). The gradient of the distance function at x is given as

∂K(x) =
x− c(x)

dK(x)
, if x 6= c(x),

and 0 otherwise. The norm of the gradient is always upper bounded by 1, i.e.,
‖∂K(x)‖ ≤ 1.

Medial axis. The medial axis of K is the following set

ma(K) =
{
x ∈ Rd \K

∣∣ ‖∂K(x)‖ < 1
}
,

i.e., the set of all center points of maximal empty open balls in the complement
Rd \K of K.

Reach. The reach of K is defined as

inf
x∈K, y∈ma(K)

‖x− y‖.

If the reach of K is positive, then we say that K has finite reach.

The approximation guarantees for our sketch, i.e., preserving the homotopy
type, are based on a reconstruction theorem for compact subsets of Euclidean space
that has been proved in [5]. This theorem topologically relates the off-sets of two
compact sets that need to satisfy certain conditions.
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Figure 1: Example flow line in two dimensions for a set X of five sample points.
Shown on the left is the starting point x of the flow line together with the starting
flow direction that is determined by the smallest enclosing ball of NX(x), which
here is just a sample point. Then, shown from left to right are the points where the
set NX(x), and thus the direction of flow, changes. The flow line ends (shown on
the right) in a local maximum of the distance function, i.e., x is contained in the
convex hull of NX(x).

α-offset. For any set K ⊂ Rd and α > 0 let Kα be the Minkowski sum of K and
B(0, α), i.e.,

Kα =
{
x ∈ Rd |x ∈ B(x′, α), x′ ∈ K

}
.

Now we are equipped with the necessary definitions to state the reconstruction
theorem.

Theorem 1. [Chazal et al.] Let ρ > 0 be the reach of K and let K ′ ⊂ Rd be a
compact set such that the Hausdorff distance between K and K ′ is less than ρ

17 , i.e.,
dH(K,K ′) < ρ

17 , then the complement Rd \K ′α of K ′α is homotopy equivalent to the
complement Rd \K of K, and K ′α is homotopy equivalent to Kη for all sufficiently
small η > 0, provided that

4 · dH(K,K ′) ≤ α ≤ ρ− 3 · dH(K,K ′).

As we have already indicated in the introduction, often K ′ is a finite sampling
of K. Let X be such a finite sampling, then Xα = K ′α is a union of balls with radius
α that is homotopy equivalent to Kη for all sufficiently small η > 0, if the Hausdorff
distance between Xα and K is small, and α is in the range given by Theorem 1.
Note that the practical problem of choosing a good value for α, i.e., a value that
falls into the range specified by Theorem 1 still remains open. In the following we
address this problem by considering the critical points of the distance function to
the set X ⊂ K.

3 Flow Complex

The flow complex of a finite point setX ⊂ Rd is a cell complex that contains a cell for
every critical point of the distance function to X. We show that a properly chosen
sub-complex of the flow complex of X, namely some α-flow complex, provides a
homotopy equivalent reconstruction of the support of a probability measure µ given
that X is a sufficiently dense sampling drawn from µ.

Critical points. Let K be a compact subset of Rd. The points x ∈ Rd with
∂K(x) = 0, i.e., the points for which x = c(x), are called the critical points of
the distance function dK (cf. the definition of the gradient of dK in the previous
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section). Critical points x of dK are always contained in the convex hull of their
neighbors in K, i.e., in conv(NK(x)). Note that all the critical points of the distance
function dK are either points of K, or are contained in the medial axis ma(K).

If K is a finite point set X, then a meaningful index i(x) can be assigned to any
critical point x of dX , namely the dimension of the affine hull of NX(x). Critical
points of index 0 are the points in X, i.e., the minima of the distance function.
Critical points of index d are maxima of dX , and all other critical points are saddle
points of dX . All critical points with positive index are contained in ma(X).

Flow complex. Let X ⊂ Rd be a finite point set. The flow induced by the
gradient vector field ∂X is a mapping

φX : [0,∞)× Rd → Rd

defined by the equations φX(0, x) = x and

lim
t↓t0

φX(t, x)− φX(t0, x)

t− t0
= ∂X(φX(t0, x)).

The set φX(x) = {φX(t, x) | t ≥ 0} is called the flow line of the point x, see Figure 1.
The stable manifold S(x) of a critical point x is the set of all points in Rd that flow
into x, i.e.,

S(x) = {y ∈ Rd : lim
t→∞

φX(t, y) = x}.

The dimension of S(x) is given by the index i(x). The flow complex is given by
the stable manifolds of all critical points together with the following incidence in-
formation that is defined using the unstable manifolds of critical points. Given a
neighborhood U of a critical point x and setting

V (U) =

{y ∈ Rd | ∃z ∈ U, t ≥ 0 such that φX(t, z) = y},

the unstable manifold of x is the set

U(x) =
⋂

neighborhood U of x

V (U).

The stable manifold of a critical point y is incident to the stable manifold of a
critical point x if

S(x) ∩ U(y) 6= ∅,

i.e., if there is a point in the unstable manifold of y that flows into x. The incidence
structure on the stable manifolds of the critical points is a binary relation that is

1. reflexive, because S(x) ∩ U(x) = {x} for any critical point x.

2. antisymmetric, because S(x) ∩ U(y) 6= ∅ and S(y) ∩ U(x) 6= ∅ implies x = y.

3. transitive, because S(x) ∩ U(y) 6= ∅ implies U(x) ⊆ U(y), and hence if x is
incident to z, i.e., S(z) ∩ U(x) 6= ∅, then also y is incident to z.

Hence, the combinatorial structure of the flow complex induces a partial order on
the set of stable manifolds, or the critical points of dX , respectively, that can be
encoded in a Hasse diagram, see Figure 2.
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Figure 2: On the left: A finite point set of four points (in black) in two dimensions
together with the critical points of its distance function (index-0 (black), index-
2 (light blue), and index-2 (pink)). The arrows represent flow lines that witness
the incidence relationships between the critical points. On the right: The Hasse
diagram of the flow complex.

α-flow complex. For α ≥ 0, the α-flow complex of of a finite point set X ⊂ Rd
is the Hasse diagram of the flow complex restricted to the critical points x of dX
for which dX(x) ≤ α.

In [7] it has been shown that the union of balls Xα and the α-flow complex of
the finite point set X are homotopy equivalent. Hence, also the α-flow complex of
X is homotopy equivalent to Kη for small η > 0, if the Hausdorff distance between
Xα and K is small, and α is in the range given by Theorem 1.

4 Topological Guarantees

In this section we specify conditions under which an α-flow complex of the sample
points in X = {x1, . . . , xn} drawn from µ is homotopy equivalent to supp(µ). We
do so by using the following lemma, see [6](Lemma 5.1).

Lemma 2. Given a sequence of sample points x1, . . . , xn drawn independently from
a probability measure µ on Rd. Then, for every ε > 0 and any x ∈ supp(µ),

lim
n→∞

P
[
‖x1(x)− x‖ > ε

]
= 0,

where x1(x) is the nearest neighbor of x in {x1, . . . , xn}.

An immediate consequence of this lemma is the following corollary.

Corollary 3. Given a sequence of sample points x1, . . . , xn drawn independently
from a probability measure µ with compact support on Rd. Then, for every ε > 0,

lim
n→∞

P
[
dH
(
supp(µ), X

)
> ε
]

= 0,

where dH
(
supp(µ), X

)
is the Hausdorff distance between supp(µ) and X = {x1, . . . , xn}.

Proof. Since supp(µ) is compact there is a finite set of points y1, . . . , ym ∈ supp(µ)
such that the union of balls

⋃m
i=1B(yi, ε/2) covers supp(µ). Assume there exists

y ∈ supp(µ) such that minx∈X ‖x − y‖ > ε. By construction there exists yi such
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that ‖y − yi‖ ≤ ε/2, and thus minx∈X ‖x− yi‖ > ε/2. It follows that

P

[
sup

y∈supp(µ)
min
x∈X
‖x− y‖ > ε

]

≤ P

[
max

y∈{y1,...,ym}
min
x∈X
‖x− y‖ > ε/2

]
≤

m∑
i=1

P

[
min
x∈X
‖x− yi‖ > ε/2

]

=

m∑
i=1

P

[
min
x∈X
‖x1(yi)− yi‖ > ε/2

]
,

where the second inequality follows from a simple union bound. From Lemma 2 we
have

lim
n→∞

P [‖x1(yi)− yi‖ > ε/2] = 0,

for all yi, and thus

lim
n→∞

P

[
sup

y∈supp(µ)
min
x∈X
‖x− y‖ > ε

]
= 0,

which implies the claim on the Hausdorff distance since we also have xi ∈ supp(µ)
for all sample points and thus

max
x∈{x1,...,xn}

inf
y∈supp(µ)

‖x− y‖ = 0.

Now we are prepared to state and prove our topological approximation guaran-
tees.

Theorem 4. Given a sequence of sample points x1, . . . , xn drawn independently
from a probability measure µ with compact support on Rd whose reach ρ is positive.
Then, for every 0 < α < ρ and sufficiently small η > 0,

lim
n→∞

P
[

the α-flow complex of {x1, . . . , xn}

is not homotopy equivalent to suppη(µ) ] = 0.

Proof. Since the α-flow complex of X = {x1, . . . , xn} is homotopy equivalent to the
union of balls B(xi, α), i = 1, . . . , n it suffices to show that

lim
n→∞

P

[
n⋃
i=1

B(xi, α) is not homotopy equivalent

to suppη(µ)
]

= 0.

For that we check that α satisfies the conditions of the reconstruction theorem
(Theorem 1). By Corollary 3,

lim
n→∞

P
[
dH
(
supp(µ), X

)
> ε
]

= 0

for every ε > 0. Hence,

lim
n→∞

P
[
4 · dH

(
supp(µ), X

)
> α

]
= 0,
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Figure 3: First three rows of the scatter plot matrix of the 14-dimensional embed-
ding of the MovieLens data set.

and

lim
n→∞

P
[
ρ− 3 · dH

(
supp(µ), X

)
< α] = 0,

which implies the claim about the homotopy equivalence of
⋃n
i=1B(xi, α) and

suppη(µ) and hence the claim of the theorem.

5 Choosing a good value for α

In this section we prove a theorem that allows to chose a good value for α in
practice. The theorem states that the critical points of the distance function to the
set X = {x1, . . . , xn} of sample points can be partitioned into two subsets. The
first set contains the critical points that are close to supp(µ), and the second set
contains the critical points that are close to the medial axis ma(µ) of supp(µ), i.e.,
there are no critical points in the complement of supp(µ) ∪ ma(µ) or more precisely
in

complε(µ)

= closure
(
conv(supp(µ)) \

(
suppε(µ) ∪maε(µ)

))
for any small enough ε > 0. Hence, for large samplings only the critical points with
small distance values are relevant for sketching supp(µ).

Theorem 5. Given a sequence of sample points x1, . . . , xn drawn independently
from a probability measure µ with compact support on Rd. If the reach ρ of the
support is positive, then, for every 0 < ε < ρ/2,

lim
n→∞

P
[
complε(µ) contains a critical point of dn

]
= 0,

where dn : Rd → R is the distance function to the set X = {x1, . . . , xn}.

Proof. Let (xn) be a sequence of points in supp(µ) such that cn ∈ complε(µ) is a
critical point of dn, i.e., the distance function to the first n points of the sequence.
Since the closure of complε(µ) is compact we can assume by turning to an appro-
priate subsequence that the sequence (cn) converges to c ∈ complε(µ). By the same
argument we can even assume that all the cn have the same index i ∈ {1, . . . , d}.
Let y0n, . . . , yin be the points in N(cn) ⊂ X such that cn is the center of the small-
est enclosing ball of {y0n, . . . , yin}, i.e., this ball is given as B(cn, ‖cn − y0‖) and
does not contain any point from X in its interior. By the compactness of supp(µ)
we can assume that the sequence (yjn) converges to yj ∈ supp(µ). Since cn is the
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center of the smallest enclosing ball of the points y0n, . . . , yin it can be written as a
convex combination of these points, i.e.,

cn =

i∑
j=0

λjnyjn

with
i∑

j=0

λjn = 1 and λjn ≥ 0, j = 0, . . . , i.

That is, the vector λn = (λ0n, . . . , λin) is from the i-dimensional standard simplex
which is compact. Hence by turning to yet another subsequence we can assume
that λn converges in the standard simplex. Let λ = (λ0, . . . , λi) be the limit of

(λn), then we have c =
∑i
j=0 λjyj and thus c is the center of the smallest enclosing

ball B(c, ‖c − y0‖) of the points y0, . . . , yi. If B(c, ‖c − y0‖) does not contain any
point from supp(µ) in its interior, then c must be a point of the medial axis ma(µ)
which is impossible since the points cn ∈ complε(µ) are at distance at least ε
from the medial axis, and hence (cn) can not converge to c. Thus, B(c, ‖c − y0‖)
must contain a point z ∈ supp(µ) in its interior, i.e., there exists δ > 0 such that
B(z, δ) ⊂ B(c, ‖c− y0‖). Since cn converges to c and the radii ‖cn − y0n‖ converge
to the radius ‖cn− y0‖ we also have B(z, δ) ⊂ B(cn, ‖cn− y0n‖) for n large enough,
and thus limn→∞ ‖x1(z)− z‖ ≥ δ. That is, for n large enough the event[

complε(µ) contains a critical point of dn
]

implies the event
[
‖x1(z)− z‖ ≥ δ

]
. Hence,

lim
n→∞

P
[
complε(µ) contains a critical point of dn

]
> 0.

implies that

lim
n→∞

P
[
‖x1(z)− z‖ ≥ δ

]
> 0 for z ∈ supp(µ),

which contradicts Lemma 2. Thus we have

lim
n→∞

P
[
complε(µ) contains a critical point of dn

]
= 0.

In practice we expect that the number of critical points whose distance value
is at most α ≥ 0 is increasing fast with growing α for small values of α. Once α
is large enough such that all the critical points that belong to supp(µ) have been
found, the number of critical points remains constant for growing α, and is only
increasing again once the critical points that belong to ma(µ) are being discovered.
There are two things one should bear in mind though. First, this behavior is only
expected if supp(µ) does not exhibit geometric features on different scales, because
otherwise critical points that belong to the medial axis can be discovered before
critical points that belong to the support, and second, by construction the medial
axis ma(µ) is sampled much more sparsely by critical points than supp(µ). Hence,
if supp(µ) does not exhibit geometric features on different scales, then we expect
the number of critical points to grow at first with growing α and to remain almost
constant once all the critical points that belong to supp(µ) have been discovered.
A good value for α should be the point at which the number of critical points stays
almost constant.
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Figure 4: The number of critical points of the α-flow complex as a function of α for
the first three to six dimensions (from top-left to bottom-right) for the MovieLens
data set. Note that in dimension d we can only have critical points of index up to
d.

6 Implementation

We have designed and implemented an algorithm for computing the Hasse diagram
of the whole flow complex. The experimental results that we report in the following
section have been obtained using this implementation.

There is a straightforward way to distribute our algorithm if we are only in-
terested in computing the α-flow complex for small values of α > 0, e.g., when
sketching the support supp(µ) of a probability measure µ on Rd from a given fi-
nite sampling {x1, . . . , xn} drawn independently from µ. The idea for distributing
the algorithm is based on the following simple observation which is implied by the
triangle inequality.

Observation 6. For any α > 0, if c is a critical point of the distance function
dn : Rd → R to the set {x1, . . . , xn} whose distance value dn(c) is at most α and
whose nearest neighbor set N(c) contains xi, then N(c) is contained in the ball
B(xi, 2α), i.e., N(c) ⊂ B(xi, 2α).

The distributed algorithm can now be implemented through the following map-
and reduce steps.

Map. For every xi ∈ X = {x1, . . . , xn} let Xi = B(xi, 2α) ∩ {x1, . . . , xn}. For
i = 1, . . . , n, compute the α-flow complex for Xi. This can be done by computing
the whole flow complex, i.e., the ∞-flow complex, for Xi and removing all critical
points with distance value larger than α.

Reduce. Let G = (V,E) be the graph whose vertex set is V = [n] = {1, . . . , n}
and whose edge set is E =

{
(i, j) ∈ [n] × [n] |Xi ∩ Xj 6= ∅

}
. Combine the α-flow

complexes for the sets Xi by traversing the connected components of the graph G
in a breadth-first manner. Note that the α-flow complex is itself a graph, namely a
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Figure 5: The number of critical points of the α-flow complex as a function of α for
the Body Dimensions data set restricted to the first five dimensions (on the left)
and the Ecoli data set (on the right).

Hasse diagram. The combination of two α-flow complexes is achieved by identifying
all common vertices in the respective Hasse diagrams.

Theorem 7. The distributed algorithm that comprises the map- and reduce step
computes the α-flow complex of {x1, . . . , xn}.

Proof. We need to argue that the algorithm finds all critical points of the distance
function dn and connects them in the right way. By Observation 6 the α-flow
complex of Xi does contain any critical point c of the distance function dn with
xi ∈ N(c) whose distance function value is at most α. Hence, any critical point of
dn with distance value at most α is contained in the union of the α-flow complexes
of the sets Xi, where they are also connected in the right way.

7 Experiments

We have tested our approach on three publicly available data sets in medium di-
mensions that we describe in the following.

MovieLens. The MovieLens 100k data set [21] was collected by the GroupLens
Research Project at the University of Minnesota. It consists of 100,000 ratings from
943 users on 1,682 movies. The data set can be viewed as an incomplete matrix
that is indexed by the users and the movies, respectively, where the matrix entries
are the ratings. Therefore, the MovieLens data set is not a point cloud data set
itself, but it is straightforward to derive point clouds for the movies and for the
users, respectively, from the completed ratings matrix using principal component
analysis. We used a technique by Bell et al. [2] (called ComputeNextFactor) for
completing the ratings matrix that at the same time computes a low dimensional
spectral embedding for the movies, i.e., every point in the low dimensional point
cloud corresponds to a movie. Using this technique we created a 14-dimensional
embedding of the 1682 movies. Figure 3 shows three rows out of a scatter plot
matrix visualization of the data set, with scatter plots of the first three dimensions
against all 14 dimensions. As can be seen, the trailing dimensions are correlated
with the leading three dimensions and thus contribute less geometric information
than the leading dimensions. We therefore computed α-flow complexes only for the
data sets in three to six dimensions. Figure 4 shows the number of critical points as
a function of the value α. The functions look like expected, namely we observe a fast
increase in the number of critical points up to a threshold value for α. Beyond the
threshold value the number of critical points stays almost constant. Note that the
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threshold value increases with the dimension from ≈ 2 in three dimensions to ≈ 3
in six dimensions. This increase is expected since the distances between the points
that represent the movies also increase with the dimension. Another interesting
observation is the following: the plots in Figure 4 for Dimensions 5 and 6 indicate
that the intrinsic dimension of the data set is four since almost no critical points of
index six and only very few critical points of index five can be found.

Body Dimensions. The Body Dimensions data set [15] contains 507 points with
21 attributes (excluding four nominal attributes) that represent measurements of
the human body. The first nine attributes are skeletal measurements, whereas the
latter 12 are girth measurements. The first five skeletal measurements regard the
body’s torso. Here we restricted ourselves to these first five dimensions. Figure 5
(on the left) shows the number of critical points as a function of the value α for this
data set. The function again looks like expected. We observe a fast increase in the
number of critical points up to a threshold value for α which is ≈ 2.

Ecoli. The Ecoli data set [18] contains 336 points in eight dimensions. From
these dimensions we removed two binary attributes and the sequence number and
considered only the remaining five metric (Euclidean) dimensions. Figure 5 (on the
right) shows the number of critical points as a function of the value α for this data
set. Again, this function looks like expected. The threshold value for α here is
≈ 1.75.

8 Conclusions

We have presented an approach to sketch the compact support of a probability
measure on Rd by an α-flow complex. With high probability, the α-flow complex is
homotopy equivalent to the support of the measure for large enough samplings and
good values for α. We have shown how to choose a good value for α in theory and
in practice (on some real data sets). We have also briefly discussed a distributed
algorithm to compute α-flow complexes for small values of α.
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